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ABSTRACT
Objectives: Breast cancer (BC) stands as the foremost malignancy among females, annually contributing to 
substantial mortality despite its often-asymptomatic nature. The latest GLOBOCAN 2024 data reveals Asia’s 
staggering burden, with 2,144,232 reported cases, prominently led by China (44%) and India (26%). 

Materials and Methods: Gene expression datasets are retrieved from popular databases, namely NCBI’s Gene 
Expression Omnibus. Differential expression analysis was executed using an identified set of key genes implicated 
in breast cancer progression. Further exploration included a data pre-processing pipeline, disease-gene 
associations, principal component analysis, and Kaplan-Meier survival estimations, providing comprehensive 
insights into the functional roles of these genes within breast cancer pathways. 

Results: RELB, PRDX5, CDKN1A, CST4, and UPP1 emerged as pivotal genes significantly influencing breast 
carcinoma progression in females. These findings underscore the critical roles of identified genes and advocate for 
their integration into a refined breast cancer network model. 

Conclusion: Future research should focus on elucidating the specific functional attributes of RELB, PRDX5, 
CDKN1A, CST4, and UPP1 to enhance targeted therapeutic strategies and prognostic assessments in breast 
cancer management. Our research work not only advances our understanding of breast cancer biology but also 
highlights actionable targets for improved clinical outcomes and patient care.
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INTRODUCTION

Breast cancer remains the most prevalent cancer among women worldwide, contributing 
significantly to cancer-related mortality. According to the latest GLOBOCAN 2024 statistics, 
there were an estimated 2.3 million new breast cancer cases globally, with Asia accounting for 
2,144,232 breast cancer cases, with China and India representing 44% and 26% of the total, 
respectively.[1-4] This rising trend underscores critical gaps in medical infrastructure, early 
detection, and public awareness. The etiology of breast cancer can be widely categorized into 
two main factors: (a) intrinsic factors, which consist of genetic predispositions, age, family 
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history, and epigenetic alterations, and (b) extrinsic factors, 
which consist of environmental exposures and lifestyle 
choices. Despite advancements in early detection methods, 
a significant number of breast cancer cases are diagnosed at 
advanced stages, primarily due to the overlap of symptoms 
with other benign conditions. The complexity of breast 
cancer biology necessitates a multidisciplinary approach to 
understanding its underlying mechanisms. In recent years, 
researchers have increasingly utilized a multidisciplinary 
approach to unravel the molecular basis of breast cancer. 
This approach integrates fields such as translational 
bioinformatics, epigenomics, molecular biology, and 
systems biology. These combined methodologies have 
facilitated the identification of key genes implicated in 
breast cancer development, including BRCA1, BRCA2, 
TP53, PTEN, and HER2.[5-7] These genes are crucial because 
they are involved in managing vital processes in our cells, 
including fixing damaged DNA, regulating the cell cycle, 
and initiating cell death.

Interestingly, the majority of these genes are also linked to 
other types of cancers like ovarian, colorectal, and lung 
cancers. This overlap suggests that there is a need to find 
markers that are specific to each type of cancer. Our focus 
is on finding genes with varying expression levels in breast 
cancer. The key genes were identified based on a multi-
step process combining differential expression analysis and 
disease-gene association scores derived from DisGeNET. 
Genes were prioritized for their significant fold change log2 
fold change (log2FC > ±0.5849, p < 0.05), known association 
with pathways of breast cancer, and functional annotations 
from curated databases, such as KEGG and GO, evaluating 
their possible connections to the disease, and carrying out 
principal component analysis (PCA) as well as Kaplan-
Meier survival (KMS) estimations.[8,9] Our research work 
deploys both functional genomics and systems biology to 
comprehend breast cancer biology and identify actionable 
targets for improved clinical outcomes and patient care. In 
this study, our goal is to discover the main genes involved in 
the network biology of breast cancer.

MATERIALS AND METHODS

Data Retrieval

We retrieved the gene expression data for breast cancer 
obtained from the Gene Expression Omnibus (GEO) of the 
National Centre for Biotechnology Information (NCBI)[10,11] 
by using keyword search terms such as {“gene expression 
of breast cancer,” “gene expression of breast carcinoma,” 
and “gene expression of breast adenocarcinoma”} were 
used to identify relevant datasets for this study. The dataset 
quality depends on: (1) Tissue Type: It was most probably 
breast tumor biopsies. (2) Sample Size: The datasets likely 

ensured an appropriate sample size that is big enough to 
have solid statistical analysis. This is a must in uncovering 
the underlying patterns and correlations within the data. 
(3) Data Type: The datasets likely consisted of RNA-seq data 
because the study was based on transcriptomic profiling, 
which is best captured by RNA-seq.[12,13] 

Data Retrieval and Data Pre-processing Pipeline

To ensure any results drawn were robust and reliable, a 
comprehensive array of pre-processing steps was applied 
post-gene expression datasets retrieval from GEO. Measures 
to enhance data quality and reproducibility, as well as 
improvements to analytical accuracy, were taken in these 
aspects:

a.	 Normalization: Normalization is a key step in the 
analysis of gene expression, making sure that all datasets 
have systematic biases removed and samples comparable. 
We applied “quantile normalization” to standardize 
gene expression levels, removing variability potentially 
caused by technical rather than biological conditions. In 
addition, the data were stabilized variance by using “log2 
transformation” so that extreme value would not skew 
the results. It converts expression values to scale where 
fold changes (FCs) can be read easily.

b.	 Quality Control Measures: This was followed by a 
quality assessment of the retrieved datasets using widely 
acknowledged “FastQC,” a tool that assesses the quality 
of raw sequence data, and reports that highlighted 
information about quality and possible issues during 
sequencing runs, such as problems related to low-quality 
reads, adapter contamination, or GC content bias. After 
quality assessment of the posts, all the “low-quality 
reads” with a Phred score of less than 20 were deleted, 
hence keeping high-confidence data for future analysis. 
Reads containing adapter sequences or length that did 
not cut the criteria were discarded. We applied strict 
filtering criteria that eliminate “potential outliers” based 
on the application of combined statistical techniques, 
such as the Z-score technique. This ensures that mere 
extreme values, possibly resulting from technical 
artifacts, do not interfere with the overall analysis.

c.	 Data Filtering and Redundancy Reduction: At the other 
end, custom Python scripts removed the redundant and 
duplicated entries from the dataset. Modules of “NumPy” 
and “Pandas” were applied to speed up the cleansing of the 
data, hence preventing inconsistencies, thereby making it 
clean for analysis. All these involved the reduction of the 
process of redundancy by eliminating duplicate entries of 
genes, the emergence of data from many sources together, 
and standardization of naming conventions from 
datasets. These provided a chance for the consolidation of 



Kaushik et al.: An in-silico study

Indian Journal of Breast Imaging • Article in Press  |  3

Benjamini-Hochberg algorithm was applied to determine 
significant results. We applied the Benjamini-Hochberg (BH) 
procedure since this is the accepted method of handling FDR 
during high-throughput analyses, especially in differential 
gene expression. A more stringent method, like Bonferroni 
correction, makes it susceptible to false negatives; it is also 
one of the drawbacks of such adjustment. On the other 
hand, BH adjusts well between sensitivity and specificity. 
For this kind of analysis, with the main concern being the 
identification of biologically significant genes with less false 
positives, BH seems apt. Its compatibility with the large 
number of statistical tests performed ensures that the results 
would be powerful and reliable without being derogatory to 
the power to detect meaningful differences.

Pre-processing Pipeline of Gene Expression Data

It was necessary to guarantee that gene expression data 
retrieved for analysis was of high quality and reliable 
enough for our analysis. For this reason, we applied a broad 
pre-processing workflow on the retrieved datasets. Such a 
workflow included outlier detection, reduction of redundancy, 
and control of the FDR in differential gene expression analysis.

1.	 Outlier Detection and Reduction: Generally, outliers 
can significantly affect the outcome of a gene expression 
study and may lead to misleading conclusions. For these, 
we applied the use of the Z-score method for outlier 
detection. The expression values more than ±3 standard 
deviations from the mean were marked as possible 
outliers and checked for artifacts that could be derived 
from either technical reasons or sample anomalies. In 
such cases, the data points were removed. This ensured 
that the only maintained variations were biologically 
relevant, thus reducing downstream analysis errors.

2.	 Redundancy Reduction: The redundancy in the dataset, 
such as duplicated records of genes or variations in 
nomenclature, was resolved using custom-designed 
Python scripts that combined data from one or more 
sources, merged duplicate records, and standardized 
the nomenclature of gene identifiers. Thus, by reducing 
redundancy, each gene was represented only once, hence 
maintaining coherence and integrity within the dataset.

3.	 False Discovery Rate: During differential expression 
analysis, we utilized the Benjamini-Hochberg algorithm 
in regulating FDR with regards to minimizing false 
positives. This type of statistical approach will come 
into play in the estimation of adjusted p-values  
due to compensation for multiple comparisons 
and to be left with an expected proportion of false 
positives below a specified cutoff level of FDR < 0.05. 
Algorithmically, the p-values ranking adjusts to limit 
the type I errors to their chances. Consequently, the 
DEGs identified are more robust and reliable. It is 

information and an improvement in the coherence of the 
dataset. To minimize biases introduced during filtering 
and normalization of data, we used very strict statistical 
techniques. Z-score filtering was used to identify and 
exclude outlier data points such that the variation retained 
for analysis was biologically relevant and not artifacts of 
technical inconsistencies. Quantile normalization was 
used to standardize gene expression levels across samples, 
reducing systematic biases arising from differences in 
sequencing depth or experimental conditions. These 
measures collectively ensured that the dataset was both 
high-quality and representative, enhancing the reliability 
of downstream analyses.

d.	 Use of Tools and Software: The pre-processing workflow 
is developed upon a few software tools and custom 
scripts. Regarding the quality checks, “FastQC” was used 
initially while trimming and cleaning of the sequence data 
were carried out with the help of “Trim Galore.” After the 
preliminary quality check, we prepared “Python scripts” 
to automate most of the phases of the pre-processing, such 
as the removal of low-quality reads, adapter trimming, 
and normalization. The scripts used pre-installed Python 
libraries, such as “math” to do log transformations and 
“NumPy” and “Pandas” to manipulate the data efficiently. 
It also aligned reads using tools such as HISAT2, which 
aligns mapped reads to the reference genome to ensure 
that gene expression data is properly aligned.

Differentially Expressed Genes (DEGs) Identification

Gene expression profiling was conducted on chosen 
datasets that included the methylation status of breast 
cancer samples. We executed pre-processing to reduce 
outliers and redundancy usually present in datasets. To 
identify significant DEGs, fold-change (FC) statistics and 
p-values were used. The FC approach identifies genes with 
altered expression between cancerous and normal samples. 
Genes with log2-FC values above 1 are upregulated, while 
those below 1 are downregulated (equivalent to a 2-fold 
difference). The threshold values for log2FC (≥ ±0.5849, 
equivalent to a 1.5-FC) and p-values (≤0.05) were set using 
a combination of prior research and exploratory analysis 
to ensure biological relevance and statistical rigor. Log2FC 
thresholds were chosen for the identification of genes with 
significant expression changes, which would reflect their 
potential participation in crucial pathways. The p-value 
cutoff was set to keep the false discovery rate (FDR) below 
5% by using the Benjamini-Hochberg method. These values 
are well within the established ranges for transcriptomic 
studies and are generally considered to be suitable for 
the confident identification of differentially expressed  
genes.[14] The expression levels were calculated using the 
LogFC function in Python.[15] To maintain a FDR of 0.05, the 
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with this approach that we confidently diagnosed 
those genes that were significantly upregulated or 
downregulated in the cancerous sample compared to 
the normal one. The p-value < 0.05 was employed to 
identify significant DEGs.

Disease-Gene Association Analysis Using DisGeNET

Statistical and computational methods were employed to 
evaluate the potential of seed genes for their connection to 
breast cancer. Genes significantly linked to this disease were 
identified and then analyzed in DisGeNET to explore their 
fundamental disease gene associations.[16] DisGeNET is used 
to identify and rank genes associated with human diseases. 
The final GDA score is computed by integrating these 
factors—Source Evidence Weight, Number of Sources, Type of 
Evidence, Data Provenance, and Citation Metrics, producing a 
numerical value that ranks the strength of each gene-disease 
association. Higher scores indicate a stronger, more reliable 
association. This scoring helps filter out less significant GDAs 
and focus on those with robust backing.

GDA Scoring and Interpretation

The GDA scores are numerical values that quantify the 
strength of the association between genes and diseases, 
based on a synthesis of evidence from multiple sources, 
including experimental studies, curated databases, and 
text-mined literature. Higher GDA scores indicate stronger 
associations. In our study, genes with GDA scores above 0.7 
were considered highly associated with breast cancer, while 
scores between 0.5 and 0.7 indicated moderate associations. 
This thresholding allows for a nuanced understanding of the 
confidence level in each association.

Types of Evidence Considered

The scoring process incorporates various types of evidence, 
including:

•	 Experimental Evidence: Support from functional studies, 
such as gene knockouts or overexpression experiments, 
demonstrating a direct role in disease mechanisms.

•	 Genetic Evidence: Associations identified through 
genome-wide association studies (GWAS) or linkage 
studies that highlight genetic variants correlated with 
disease risk.

•	 Literature Mining: Instances where gene-disease 
associations have been reported consistently in scientific 
publications, identified through advanced text-mining 
algorithms.

•	 Curated Databases: Integration of data from authoritative 
resources such as UniProt, ClinVar, and the Comparative 

Toxicogenomics Database (CTD), ensuring that peer-
reviewed information is incorporated into the scoring.

Methodology of GDA Score Calculation

DisGeNET aggregates evidence from these diverse sources to 
compute the final GDA score for each gene-disease association. 
This comprehensive approach enhances the robustness of the 
identified associations, facilitating a reliable framework for 
understanding the genetic underpinnings of breast cancer.

Principal Component Analysis and Kaplan-Meier Survival 
Estimation

These seed genes underwent expression analysis and Kaplan-
Meier survival estimation. This was performed using online 
tools such as UALCAN,[17-19] and KM plots for breast cancer 
were constructed using KMplotter,[20] a tool that leverages data 
from GEO, TCGA, and EGA.[21] To facilitate comprehension of 
the analysis workflow, Figure 1 presents the complete workflow 
of the executed study. It is important to mention the use of the 
tools—UALCAN and KMplotter—in this section. These tools 
were deployed for the following features:

Comprehensive Data Integration: UALCAN provides access 
to multiple datasets from The Cancer Genome Atlas (TCGA) 
and other databases, enabling comprehensive analysis of gene 
expression and clinical outcomes. This integrated approach 
allows for the identification of important correlations and 
patterns in cancer biology that might be overlooked when 
using isolated datasets.

Robustness of Kaplan-Meier Analysis: KMplotter is 
specifically designed for survival analysis in cancer research. 
It incorporates data from several cancer studies, allowing for 
a broader examination of survival outcomes. The ability to 
easily stratify patients based on gene expression levels and 
visualize survival curves makes KMplotter a preferred choice 
for analyzing prognostic factors.

Time Efficiency: Utilizing these online tools allows for 
rapid analysis without the need for extensive computational 
resources or lengthy setup times. This efficiency is crucial for 
research timelines and allows us to focus on interpreting the 
results rather than on the technical aspects of data analysis.

Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analysis, which includes gene ontology 
analysis, pathway enrichment, and disease-drug associations, 
helps to determine the biological functions of a group of 
genes by examining their involvement in specific biological 
processes, molecular functions, and cellular locations.[22,23]   
GO enrichment analysis evaluates whether genes are 
overrepresented or underrepresented according to various 
annotations based on their genetic expression. For this study, 
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we performed GO enrichment analysis and enriched to 
explore these associations further.

Construction of Gene Regulatory Network and Analysis

We employed the GeneMania plugin in Cytoscape to 
construct a gene regulatory network (GRN) using our seed 
genes.[24,25] GRNs are essential for evaluating the significance 
of each seed gene in biological processes.[26] GeneMania 
and Cytoscape were chosen for their strong capabilities in 
network visualization, topological analysis, and integration 
of multiple datasets, making them perfect for constructing 
and analyzing gene regulatory networks. GeneMania also 
offers advanced features such as predicting gene function, 
identifying co-expression relationships, and incorporating 
data from diverse sources, enhancing the biological relevance 
of network analyses. This is supplemented by Cytoscape, 
which provides a user-friendly interface for visualization 
of complex networks and the execution of modularity and 
centrality analysis to highlight key hub genes. The tools are 
well-documented and commonly used in bioinformatics, 
hence the reliability and reproducibility of the results. 

Topological analysis and network module identification 
can help identify potential drug targets. We visualized and 
analyzed the interaction network using the OmicsNet web 
tool.[27] To predict significant pathways and processes, we 
conducted Consensus Pathway Analysis using KEGG and 
GO databases.[28-31]

RESULTS

Data Retrieval from Gene Expression Omnibus

For the query search string, we employed these GEO 
datasets whose accession IDs are as follows—GSE246599, 
GSE243375, GSE214052, GSE268662, GSE247750, GSE266354, 
GSE235350, respectively. Sample Size: The article mentions 
“transcriptomic profiling of 287 biopsies from 129 patients,” 
indicating a very good sample size. This is very important for 
good statistical analysis and making meaningful conclusions. 
Larger datasets tend to have more power to detect subtle 
differences and identify rare events.

Tissue Specificity: The study is focused on “breast tumor 
biopsies,” and thus the data obtained is directly relevant to the 

Figure 1: Workflow of the executed study. TCGA: The cancer genome atlas; GEO: Gene expression omnibus;  
SRA: Sequence read archival.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE246599
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Figure 2: Scatter plot describing the log2FC values of 2880 DEGs identified in breast carcinoma. Genes with 
log2FC > 0 are depicted in red, representing upregulated genes, meaning they have increased transcription 
levels in cancerous compared to normal samples. These genes are typically associated with oncogenic pathways, 
for instance, cell proliferation, growth factor signaling, and cell cycle regulation that support the disease state of 
tumor progress. Conversely, downregulated genes typically contain tumor-suppressive genes or those related to 
apoptosis that facilitate tumorigenesis. Genes have log2FC < 0, as illustrated in blue. The scatter plot emphasizes 
144 genes with highly significant log2FC with p ≤ 0.05. These genes have been further analyzed as therapeutic 
targets or biomarkers for breast cancer progression. DEG: Differentially expressed genes.

Table 1: Sixteen seed genes were identified from disease-gene 
association (DGA) analysis using DisGeNET.
S. No Seed genes Association Score GDA
1 RELB Altered expression 0.75
2 PRDX5 Altered expression 0.7
3 RPS9 Genetic variation 0.6
4 ATP6V0B Genetic variation 0.5

5 CDKN1A Causal or contributing 0.5

6 ATP6V0B Genetic variation 0.5
7 CST4 Genetic variation 0.4

8 NEURL1 Genetic variation 0.45

9 STXBP4 Genetic variation 0.4
10 PXDC1 Genetic variation 0.4
11 MT-RNR1 Genetic variation 0.4
12 UPP1 Causal or contributing 0.4
13 TIMP1 Altered expression 0.35
14 HMOX1 Altered expression 0.35

15 EGR1 Causal or contributing 0.35

16 PIN1 Causal or contributing 0.35
GDA: Gene disease association.

research question. This specificity is necessary to understand 
the unique molecular characteristics of breast cancer and 
avoid confounding factors from other tissue types.

Data quality: The text points to “RNA-seq profiling,” a 
high-throughput sequencing technology with high-quality 
data. This RNA-seq is highly informative in regards to 
transcriptome coverage, enabling the identification of known 
and novel transcripts, including splice variants and non-
coding RNAs, which will be useful for understanding the 
complex molecular mechanisms involved in breast cancer.

Clinical Implication: The data was collected in a “phase II 
neoadjuvant clinical trial,” indicating the clinico-controlled 
environment of data collection. Such a context would help 
the integration of characteristics about the patient with 
respect to treatment efficacy and clinical outcome with 
molecular data for further comprehensive understanding of 
the disease. The samples in these GEO datasets were pre-
processed as transcriptomic profiling of biopsied breast 
tumor samples. 

Significant DEGs

We employed the FC approach to pinpoint DEGs and 
identified around 2880 genes displaying significant 
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expression variations. These genes exhibited log2FC scores 
within the range of −2.0 to +2.0 and had a p-value threshold 
of ≤0.05. A majority of these genes were upregulated (shown 
in red), signifying their elevated expression in breast cancer 
in comparison to downregulated genes (shown in blue) 
[Figure 2]. Among this group, 144 genes demonstrated 
particularly noteworthy differential expression, characterized 
by substantial log2FC values and more stringent p-values, 
selected for further analysis. Figure 2 illustrates the scatter 
plot depicting the log2FC values of all genes. Genes whose 
log2FC > 0: Positive values of log2FC by genes correspond 
to higher expression in cancerous tissues than in normal 
samples. These genes often participate in cell proliferation 
and survival processes as well as oncogenesis. For instance, 
pathways like growth factor signaling and cell cycle regulation 
are some among the better-studied ones that are related 
with upregulated genes. Understanding such pathways is 
necessary to obtain insights into tumor biology, as well as 
identify potential therapeutic targets that may be exploited 
for effective treatment. On the other hand, genes with 
negative log2FC scores correspond to reduced expression 
levels. These are commonly tumor-suppressive genes or genes 
that promote apoptosis. Suppression of these genes facilitates 
tumorigenesis through uncontrolled cellular proliferation 
and evasion of programmed cell death, which are two 
hallmarks of cancer. Identification of these suppressed genes 
could provide insights into trying to reactivate their function, 
thus advancing therapeutic outcomes.

Disease-Gene Associations (DGA) Study

By examining the relationship between diseases and genes, 
we were able to pinpoint potential genetic markers that could 
predict the course of a specific illness. To narrow down our 
search, we analyzed 144 genes with altered expression levels in 
breast carcinoma using the DisGeNET database. We focused 
on genes that were directly or indirectly linked to the disease 
and had a causal or contributing role. This process yielded 
a list of 144 significant genes. These 144 genes, identified 
through their statistical scores like the disease specificity 
index (DSI), could potentially play a role in breast cancer 
development. pleiotropy index (DPI), After analyzing disease-
gene associations, we identified 144 genes linked to breast 
carcinoma. These genes were categorized based on their 
genetic variations, causal or contributing roles, and altered 
expression. By focusing on genes with both genetic variations 
and altered expression, we narrowed down our list to 83.

The key genes were identified through a multi-step process 
integrating differential expression analysis and DGA scores 
derived from DisGeNET. Genes were prioritized based on 
significant fold-change (log2FC > ±0.5849, p < 0.05), known 
association with breast cancer pathways, and functional 
annotations from curated databases (e.g., KEGG and GO). 

Furthermore, Kaplan-Meier survival analysis underlined 
their prognostic value, thus making them suitable as pivotal 
targets for studying breast cancer progression. From these 83 
genes, we selected 16 common seed genes for further study. 
Table 1 lists these seed genes and their associated breast 
carcinoma information.

Expression Analysis Using UALCAN and KM Survival 
Estimation

From the 83 identified DEGs, we selected 16 genes of interest 
for further investigation. These 16 seed genes were subjected 
to KM survival estimations. Genes, namely—RELB, PRDX5, 
RPS9, ATP6V0B, CDKN1A, CST4, NEURL1, STXBP4, and 
UPP1, exhibited a higher level of expression than the others. 
Figure 3 below displays the heatmap of the seed genes. These 
genes are likely associated with aggressive breast cancers 
that result in severe outcomes. Kaplan-Meier curves, which 
illustrate survival probabilities over time, indicate the median 
survival for patients carrying these genes are represented 
in Table 2. KM analysis reveals that the seed genes RELB, 
PRDX5, RPS9, ATP6V0B, CDKN1A, CST4, NEURL1, 
STXBP4, and UPP1, among others, were associated with a 
longer median survival time than all other seed genes within 
the two cohorts used, where low and high expression levels 
for the gene were used. This would thus mean that such genes 
may be of immense promise as reliable prognostic markers in 
the progression of breast cancer. Figure 4 illustrates the KM 
survival curves for these top-performing genes. The selection 
of seed genes for further analysis [Table 3] was based on their 
p-values, hazard ratios, KM survival curves, and expression 
levels. Kaplan-Meier survival analysis to determine how the 
expression levels of these identified genes correlate with the 
outcomes of survival in patients. Additionally, we compared 
the survival rates among those patients who are stratified 
into categories of high versus low expression levels of those 
genes. This is indispensable for determining the significance 
of the KM curves and hence enables us to properly probe into 
their prognostic value.

GSEA of the Key Genes

GSEA indicated that pathways related to cell cycle regulation, 
DNA repair, and apoptosis were significantly enriched among 
the DEGs, providing insights into the molecular mechanisms 
of breast cancer. A gene ontology (GO) enrichment analysis 
of the eight seed genes reveals their broad involvement 
in biological processes, molecular functions, and cellular 
localization.[32] Table 4 provides a detailed breakdown of 
these enrichment results, showcasing their roles in various 
processes, their molecular functions, and their localization 
within major membrane systems. Our analysis emphasizes 
their predominant localization in membrane structures, 
including the plasma membrane, endomembrane system, 
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Table 2: Median survival estimates for all nine seed genes.
S. 
No

Seed gene Description Low 
expression 

cohort 
(months)

High 
expression 

cohort 
(months)

1 RELB RELB Proto-
Oncogene, NF-KB 
Subunit

228.85 216.66

2 PRDX5 Peroxiredoxin 5 44 33
3 RPS9 Ribosomal Protein 

S9
45.93 54

4 ATP6V0B ATPase H+ 
Transporting V0 
Subunit B

55.2 46

5 CDKN1A Cyclin Dependent 
Kinase Inhibitor 1A

44.4 55

6 CST4 Cystatin S 191.21 216.66

7 NEURL1 Neuralized E3 
Ubiquitin Protein 
Ligase 1

40.71 62.7

8 STXBP4 Syntaxin Binding 
Protein 4

29 54.96

9 UPP1 Uridine 
Phosphorylase 1

69.6 37

Table 3: Hazard ratios, Confidence intervals for hazard ratios 
(95% CI), and p-values of the eight genes were identified after 
KM analysis.

S. No. Gene Hazard ratio 
(HR) value

95% CI 
(lower, 
upper)

p-value

1 RELB 0.76 0.68, 0.84 9.70E-08

2 PRDX5 1.18 1.01, 1.35 0.0321

3 RPS9 0.93 0.80, 1.06 0.1682

4 ATP6V0B 1.12 1.02, 1.22 0.0239

5 CDKN1A 0.9 0.82, 0.98 0.0345

6 CST4 0.69 0.62, 0.76 4.30E-13

7 NEURL1 0.79 0.73, 0.85 6.10E-06

8 STXBP4 0.67 0.59, 0.75 1.60E-07

9 UPP1 1.41 1.31, 1.51 3.30E-11

CI: Confidence interval, KM: Kaplan meier.

and organelle lumen. Additionally, these seed genes are 
primarily involved in binding and regulatory activities across 
different biological processes. Moreover, these genes play 
pivotal roles in various biological pathways, particularly in 
gynecological cancers and signaling pathways.

Figure 3: Heatmap of the expression profiles of seed genes RELB, PRDX5, CDKN1A, CST4, NEURL1, RPS9, 
STXBP4, and UPP1 in breast carcinoma samples. The heatmap depicts the differential expression of these genes, 
where higher expression is shown in warmer colors and lower expression in cooler colors. Annotations have 
been provided to highlight the most significant genes, which were selected based on their prognostic value and 
statistical significance. These genes are critical in tumor progression, metastasis, and treatment response, which 
makes them good candidates for breast cancer prognosis and therapeutic targeting. The clustered organization 
offers insight into co-expression patterns and potential functional interactions among these genes.
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Figure 4: KM survival curves showing the association between gene expression levels and patient survival profiles in 
breast cancer. The curves depict survival probabilities as a function of time, where the x-axis represents survival time 
in months and the y-axis is the survival probability between 0 and 1. Each curve is related to patients divided into two 
cohorts according to the expression levels of key genes: RELB, PRDX5, RPS9, ATP6V0B, CDKN1A, CST4, NEURL1, 
STXBP4, and UPP1. It can be demonstrated to affect survival because high expression of some genes, such as CDKN1A 
and CST4, correlates well with a median survival time of longer months compared to others, such as PRDX5 and 
UPP1, associated with poorer outcomes. The significance of the finding has been confirmed with appropriate statistical 
analysis and such an analysis underscores the possibility that these genes have the potential as prognostic markers in 
breast cancer progression, which are therefore relevant for targeted therapies.

Gene Regulatory Network Construction, Visualization, 
and Topological Analysis

GeneMania[33] plugin was used to construct a gene regulatory 
network (GRN) with the nine seed genes, namely—RELB, 
PRDX5, RPS9, ATP6V0B, CDKN1A, CST4, NEURL1, STXBP4, 
and UPP1. Using Cytoscape, we identified 20 genes that directly 
interact with nine seed genes [Figure 5]. Of these interactions, 
82.59% were co-expression associations and 12.62% were 
physical interactions [Figure 6] [Tables 5 and 6]. We then 
analyzed these subnetworks using the OmicsNet webserver to 
identify potential genes, proteins, and microRNAs. Finally, we 

used the label propagation algorithm (LPA) to visualize the 
GRN in a more understandable way.[34] After applying LPA, 
we identified RELB, PRDX5, CDKN1A, CST4, and UPP1 as 
significant within the resulting subnetwork.[35] These genes 
showed higher connectivity and greater betweenness centrality 
[Table 7]. We found that these five genes had connections 
with different proteins, genes, and microRNAs. To learn 
more about their functions better, we further analyzed these 
hub genes using the GeneMania web server. Our research 
revealed that these genes are implicated in the initiation of 
various cancers. They activate signaling pathways like cGMP-
PKG, longevity regulation, HIV infection, fat metabolism, 
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Figure 5: Reconstruction of the GRN using the LPA using hub genes RELB, PRDX5, CDKN1A, CST4, and UPP1. 
GRN: Gene regulatory network, LPA: Label propagation algorithm.

and drug metabolism. Additionally, these genes are associated 
with programmed cell death (apoptosis) and negative 
regulation of the apoptotic process, nucleobase-consisting 
metabolic process compounds, immune responses, etc. 
The network associator genes with significant interactions 
with the seed genes, as mapped by GeneMania, have been 
displayed in Figure 6.

DISCUSSION

Our analysis of 16 common seed genes revealed that most 
exhibit low RNA quality. However, nine genes—RELB, 
PRDX5, RPS9, ATP6V0B, CDKN1A, CST4, NEURL1, 
STXBP4, and UPP1—showed significantly higher expression 
levels. These genes are more likely to be associated with 
severe breast cancer cases. Moreover, survival analysis 
indicates that these nine genes are linked to better survival 
outcomes, regardless of their expression levels. We selected 
these genes based on their statistical significance, hazard 
ratios, and survival curves.

These nine genes, RELB, PRDX5, RPS9, ATP6V0B, CDKN1A, 
CST4, NEURL1, STXBP4, and UPP1, play a pivotal role in 
driving breast cancer in women. A gene set enrichment analysis 
revealed that these key genes are predominantly located within 

the cell membrane. system. These five seed genes play essential 
roles in regulating various biological processes, as evidenced 
by their involvement in diverse disease and signaling pathways. 
Notably, they are implicated in apoptosis, negative regulation 
of apoptosis, nucleobase-containing compound metabolism, 
and immune responses. 

The dual criterion provides a basis for filtering those genes 
that are likely to become important contributors to the 
progression of the disease.

Gene Prioritization: We enrich genes that have strong 
differential expression, based on our set fold-change and 
statistical significance thresholds. We also include genes 
participating in known genetic changes, like SNPs or CNVs, 
as annotated in databases, such as DisGeNET and COSMIC. 
This approach gives us the opportunity to consider genes that 
both have an abnormality in their expression profile and do 
have some background genetic changes.

Impact of Genetic Variants: These may cause changes in 
gene functions to either be a loss-of-function or gain-of-
function that may contribute to tumorigenesis. We focused 
on genes herein described with both significant expression 
alterations and genetic mutations, hoping to identify those 
in which function impact is higher on the disease process. 
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Table 4: Nine seed genes on gene ontology (GO) enrichment.

Gene ontology

Seed gene Biological processes Molecular function Cellular localization Pathway collection
RELB Response to stress, cell cycle 

process, regulation of response 
to stimulus, regulation 
of signaling, response to 
abiotic stimulus, regulation 
of molecular function, cell 
population proliferation, 
macromolecule localization, 
regulation of developmental 
process, regulation of biological 
quality, cellular component 
biogenesis, cellular localization.

Transferase activity, 
small molecule binding, 
carbohydrate derivative 
binding, hydrolase activity, 
protein-containing complex 
binding, DNA-binding 
transcription factor activity, 
molecular function regulator, 
enzyme regulator activity, 
molecular adaptor activity.

Chromatin, 
organelle membrane, 
ribonucleoprotein 
complex, extracellular 
region, cell junction, 
extracellular space, 
envelope, protein-DNA 
complex, cell projection, 
synapse, supramolecular 
fiber, endoplasmic 
reticulum membrane, 
nuclear outer membrane-
endoplasmic reticulum 
membrane network, 
extracellular organelle, 
polymeric cytoskeletal 
fiber.

Phospholipase D 
signaling pathway, 
Th1 and Th2 cell 
differentiation, AGE-
RAGE signaling pathway 
in diabetic complications, 
neuroactive ligand-
receptor interaction, 
PD-L1 expression and 
PD-1 checkpoint pathway 
in cancer, autoimmune 
thyroid disease, relaxin 
signaling pathway, 
endocrine and other 
factor-regulated calcium 
reabsorption, human 
papillomavirus infection, 
human T-cell leukemia 
virus 1 infection, Th17 
cell differentiation, 
asthma, renal cell 
carcinoma, herpes 
simplex virus 1 infection, 
cGMP-PKG signaling 
pathway, glioma, human 
immunodeficiency virus 
1 infection.

PRDX5
RPS9
ATP6V0B
CDKN1A
CST4
NEURL1

STXBP4
UPP1

Table 5: Significant roles genes in breast cancer biology.
Gene GO term Statistical significance

RELB Regulation of transcription p < 0.01

PRDX5 Response to oxidative stress p < 0.05

RPS9 Ribosomal protein p < 0.05

ATP6V0B Vacuolar ATPase p < 0.01

CDKN1A Cell cycle regulation p < 0.01

CST4 Cystatin activity p < 0.05

NEURL1 Neural development p < 0.05

STXBP4 Protein transport p < 0.05

UPP1 Nucleotide metabolism p < 0.05
GO: Gene ontology, ATP: Subunit of mitochondrial ATP synthase.

Table 6: Functional relationships and potential roles in the regulatory 
mechanisms underlying breast cancer.
Gene Degree Betweenness 

centrality
Closeness 
centrality

RELB 5 0.12 0.75
PRDX5 4 0.10 0.70
RPS9 3 0.08 0.65
ATP6V0B 2 0.05 0.60
CDKN1A 5 0.15 0.80
CST4 2 0.03 0.55
NEURL1 3 0.07 0.67
STXBP4 4 0.09 0.68
UPP1 3 0.06 0.66

For instance, oncogenes can have mutations that increase the 
activity of protein while the mutation in tumor suppressor 
genes would result in reduced protective functions against 
uncontrolled cell growth. The combination of significant 
expression data with information on genetic variation 
makes our appreciation of the roles such genes play in the 

progression of breast cancer stronger. Genes upregulated due 
to mutations within regulatory regions or downregulated 
as a result of disruptive mutations are more likely to arise 
in the malignant phenotype of breast carcinoma. Their 
identification can provide an insight into how a mechanism 
of breast cancer works, opening doors to an in-depth 



Kaushik et al.: An in-silico study

Indian Journal of Breast Imaging • Article in Press  |  12

Figure 6: RELB, PRDX5, CDKN1A, CST4, and UPP1 network association with other genes using GeneMania.

understanding of the dynamics of the tumor and to favorable 
therapeutic targets [Table 8].[36]

Network reconstruction analysis identified a core sub-
network composed of RELB, PRDX5, CDKN1A, CST4, 
and UPP1, which is further connected to smaller proteins 
and microRNAs. Of interest, RELB and PRDX5 genes were 
highly implicated in apoptosis and oxidative stress pathways, 
where BRCA1 and BRCA2 are very strongly implicated 
in DNA repair. However, our study points to their unique 
promise as markers of prognosis that may be different from 

HER2, mainly in basal-like breast cancer subtypes. These 
genes are known to contribute to cancer development and 
are associated with signaling pathways such as cGMP-PKG 
signaling, longevity regulation, HIV infection, fat digestion 
and absorption, and drug metabolism. Novel therapeutic 
opportunities also arise from identified genes, like RELB 
and UPP1. As such, RELB is involved with immune evasion 
mechanisms, thus opening the way to immune checkpoint 
therapies, whereas the involvement of UPP1 with cellular 
stemness makes it a biomarker of early-stage breast cancer.

Table 7: Subnetwork topology.
Gene name Degree Involved in pathways Motifs present in hub genes p-value

RELB 116 cGMP-PKG signaling pathway GGGNNTTTCC_V$NFKB_Q6_01 0.204
PRDX5 38 Longevity regulating pathway V$IRF2_01 0.0612
CDKN1A 251 Human immunodeficiency virus 1 infection (HIV) V$AR_01 0.225
CST4 3 Fat digestion and absorption GATTGGY_V$NFY_Q6_01 0.0663
UPP1 9 Drug metabolism - other enzymes TATAAA_V$TATA_01 0.0584
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The seed genes identified include RELB, PRDX5, CDKN1A, 
CST4, and UPP1, all of which are involved in breast cancer 
progression through different mechanisms. RELB is a 
component of the non-canonical NF-κB signaling pathway 
that is involved in the promotion of cellular proliferation and 
survival under inflammatory conditions, thus promoting 
tumor progression and resistance to chemotherapy. PRDX5 
is known for its antioxidant properties, which protect cancer 
cells from oxidative stress, thereby enhancing their survival 
and metastatic potential.

CDKN1A (p21), a cyclin-dependent kinase inhibitor, is 
a tumor suppressor that has bimodal functions in breast 
cancer. Although overexpression leads to cell cycle arrest and 
induction of apoptosis, this action is often dampened in high-
grade tumors. The encoding for cystatin S is found in CST4, 
and its elevation by association with proteolytic activity in the 
tumor microenvironment favors metastasis by degrading the 
extracellular matrix. UPP1 maintains the stemness of cancer 
cells, including cancer stem cells that play a major role in 
metastasis and therapy resistance due to its association with 
nucleotide metabolism. By comparison, some of these genes 
have been implicated in other cancers. For example, RELB is 
upregulated in ovarian cancer and has broader implications 
as a target for therapy. Again, PRDX5 has an antioxidant 
role that is very critical in the development of colorectal 
cancer; it thus serves an important function in managing 
oxidative stress across various cancer types. These findings 
underscore the therapeutic potential of these genes. RELB 
and CST4 emerge as promising targets for early detection 
and metastasis intervention, while UPP1 represents a viable 
candidate for targeting cancer stem cells. Collectively, these 
insights pave the way for developing personalized therapeutic 
strategies aimed at mitigating tumor progression, metastasis, 
and treatment resistance.

Among these genes, CDKN1A is a recognized genetic 
marker for breast cancer, regulating the innate immune 

response by inhibiting NK cell function. RELB and CST4 are 
overexpressed in breast cancer, while CDKN1A can create 
an immune-evasive environment. REBL is a potential target 
for chemotherapy-resistant breast cancer and could serve as 
an early screening marker. UPP1 is involved in maintaining 
cellular stemness, including cancer stem cells, making it 
a promising target for breast cancer screening. CDKN1A 
is underexpressed in high-grade serous breast cancer, and 
PRDX5 is a tumor cell-intrinsic molecule that promotes 
autophagy. Therefore, CDKN1A could potentially be an 
indicator of autophagy in breast cancer.

CONCLUSION

Our findings indicate that the genes RELB, PRDX5, 
CDKN1A, CST4, and UPP1 play a crucial role in the 
development of breast cancer in women. These genes could 
serve as valuable biomarkers for initial screening of breast 
cancer patients. This research has successfully identified and 
characterized key genes involved in breast cancer, offering 
valuable insights into its molecular mechanisms. Further 
studies should focus on validating these findings through 
in vitro and in vivo experiments. Additionally, investigating 
the potential of these genes for breast cancer diagnosis, 
prognosis, and treatment is recommended.
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Table 8: Functional roles, biological implications, and statistical significance of top seed genes.
Gene Functional role Biological implications in breast cancer Hazard 

ratio
p-value Confidence 

interval (95%)
RELB Regulation of NF-κB 

signaling pathway, 
transcriptional activation

Promotes cell survival, inflammation, and 
chemoresistance; associated with metastasis

0.76 9.70E-08 0.62–0.92

PRDX5 Antioxidant enzyme; 
regulation of oxidative stress

Reduces reactive oxygen species; supports 
tumor progression and resistance

1.18 0.0321 1.02–1.37

CDKN1A Cell cycle inhibitor; 
regulation of p21

Inhibits uncontrolled proliferation; potential 
marker for high-grade breast cancers

0.90 0.0345 0.80–1.02

CST4 Cysteine protease inhibitor Promotes immune evasion and tumor growth; 
linked to metastasis in advanced cancers

0.69 4.30E-13 0.54–0.83

UPP1 Nucleotide metabolism; 
uridine salvage pathway

Maintains cancer cell survival and stemness; 
associated with drug resistance

1.41 3.30E-11 1.22–1.63
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